Seiberg-Witten Solution from Matrix Theory

نویسنده

  • S. Gukov
چکیده

As another evidence for the matrix Discrete Light Cone formulation of M theory, we show how general integrable Hamiltonian systems emerge from BPS bound states of k longitudinal fivebranes. Such configurations preserve eight supercharges and by chain of dualities can be related to the solution of N = 2 four-dimensional gauge theories. Underlying Hitchin systems on the bare spectral curve with k singular points arise from the Matrix theory compactification on the dual curve. On leave from the Institute of Theoretical and Experimental Physics, 117259 Bol. Cheremushkinskaya, 25, Moscow, Russia

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Non-l 2 Solutions to the Seiberg–witten Equations

We show that a previous paper of Freund describing a solution to the Seiberg– Witten equations has a sign error rendering it a solution to a related but different set of equations. The non-L 2 nature of Freund's solution is discussed and clarified and we also construct a whole class of solutions to the Seiberg–Witten equations. § 1. Introduction With the introduction of the Seiberg–Witten equat...

متن کامل

On non - commutative N = 2 super Yang - Mills

We discuss the Seiberg-Witten solution of the non-commutative N = 2 U(N) SYM model. The solution is described in terms of the ordinary Seiberg-Witten curve of the SU(N) theory plus an additional free U(1). Hence, at the two-derivative approximation the theory flows to the ordinary commutative theory in the infra-red (k < 1/ √ θ). In particular, the center U(1) is free and it decouples from the ...

متن کامل

The Dijkgraaf - Vafa correspondence for theories withfundamental matter fields ∗

In this talk I describe some applications of random matrix models to the study of N = 1 supersymmetric Yang-Mills theories with matter fields in the fundamental representation. I review the derivation of the Veneziano-Yankielowicz-Taylor/Affleck-Dine-Seiberg superpotentials from constrained random matrix models (hep-th/0211082), a field theoretical justification of the logarithmicmatter contrib...

متن کامل

An Exact Solution to Seiberg-Witten Equation of Noncommutative Gauge Theory

We derive an exact expression for the Seiberg-Witten map of noncommutative gauge theory. It is found by studying the coupling of the gauge field to the Ramond-Ramond potentials in string theory. Our result also proves the earlier conjecture by Liu.

متن کامل

Effective Superpotentials for SO/Sp with Flavor from Matrix Models

We study matrix models related to SO/Sp gauge theories with flavors. We give the effective superpotentials for gauge theories with arbitrary tree level superpotential up to first instanton level. For quartic tree level superpotential we obtained exact one-cut solution. We also derive Seiberg-Witten curve for these gauge theories from matrix model argument.

متن کامل

Holomorphicity and Modularity in Seiberg-Witten Theories with Matter

We calculate the gravitational corrections to the effective action of N=2 SU(2) Seiberg-Witten theory with matter using modularity, the holomorphic anomaly equation and expected behavior at the boundaries of the moduli space. As in pure gauge theory we show that the gap condition at the dyon singularities completely fixes the gravitational corrections. We discuss the behavior of the gravitation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997